Hypotheses

1. CH₄ flux is strongly influenced by plant functional groups:
 a. Presence of sedges will increase CH₄ flux due to aerenchyma tissues (pipe-effect) and increased labile substrates.
 b. Presence of Ericaceae will decrease CH₄ flux due to rhizosphere oxidation and the absence of aerenchyma tissues.

2. Pathways of methanogenesis are influenced by plant functional groups:
 a. Presence of sedges will increase enrichment of δ¹³C of CH₄ which leads to methanogenesis through Acetate Splitting
 b. Absence of sedges will decrease enrichment of δ¹³C of CH₄ which leads to methanogenesis through CO₂ Reduction

3. Methanotrophy (CH₄ oxidation) is influenced by plant functional groups:
 a. Presence of sedges will decrease methanotrophy
 b. Absence of sedges will increase methanotrophy

Mixed Species

Sedge
- High water table favors roots with aerenchyma
- Deep rooting & O₂ transport
- Higher nutrient demand & productivity
- Supports aerobic saprophytes
- CH₄ piping & diffuse flux

Ericaceae
- Lack aerenchyma
- Recalcitrant litter, slow decomposition
- Lower nutrient demand
- Diffuse & elevated CH₄ flux

Conceptual model of plant community interactions in peatlands. Sedges and Ericaceae have opposite effects on both CO₂ cycling and CH₄ flux, which are expected to be especially pronounced as water tables decline. Each mixed, sedges, or Ericaceae vegetation treatment include Polytrichum and Sphagnum mosses.

Hypothesis 1 – Sedge presence significantly increases CH₄ flux while Ericaceae presence results in decline

Effect on CH₄ flux (mg H₂O 24h⁻¹ dm⁻²)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CH₄ Flux (mg H₂O 24h⁻¹ dm⁻²)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>0.13</td>
<td></td>
</tr>
</tbody>
</table>

Overall P = (0.001)
Sedge Effect: P (0.001)
Ericaceae Effect: P (0.003)

References

Acknowledgments

We thank Lynette Potvin, Evan Kane, Tamara Baker, Carley Kratz, Ellen Beller, Joe Dierscher, and John Hribiljan for their assistance. This project was funded by the Michigan Technological University Summer Undergraduate Research Fellowship program, Ecosystem Science Center, and partnership with the USDA Forest Service.