Shining Light on *Cladophora* in the Great Lakes

Anika Kuczynski and Martin T. Auer

Civil and Environmental Engineering, Great Lakes Research Center

Unsightly Problems

- Clogged water intakes
- Beach fouling
- Habitat for pathogens

Investigating Light

The resurgence in *Cladophora* beach fouling is due to an increase in colonizable “real estate” through improved light conditions at locations where phosphorus (P) is provided.

Invaders of the 1990s:
Filter feeding dreissenid mussels remove light-disturbing particulate from the water column.

Investigating Phosphorus

- Apart from favorable light conditions, *Cladophora* requires phosphorus to grow.

- The Golden Horseshoe region along the northwestern shore of Lake Ontario is heavily impacted by urban discharges.
- Stored P in algae samples taken along the Ajax, ON nearshore reveal that algae growing in close proximity to a wastewater treatment plant outfall have an elevated stored P content, which indicates an increased production potential.

Nearshore Management Approach

Great Lakes Water Quality Protocol (2012)

We cannot manage light, but we can manage phosphorus.

1) To achieve the Lake Ecosystem Objective of “[maintaining] the levels of algal biomass below the level constituting a nuisance condition,” we must define nuisance conditions.

2) To avoid nuisance conditions, the Protocol demands development of “Substance Objectives for phosphorus concentrations for nearshore waters [...].”

We propose development of a phosphorus standard based on stored P, representing growth potential due to phosphorus availability, which can be related to soluble reactive phosphorus concentrations in nearshore waters using the Great Lakes *Cladophora* Model (Tomlinson et al. 2010).

This work was supported in part by Gowling Lafleur Henderson LLP, based in Toronto, ON.